
SimBiology 2
User’s Guide



How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

SimBiology User’s Guide

© COPYRIGHT 2005–2006 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.



Revision History
September 2005 Online only New for Version 1.0 (Release 14SP3+)
March 2006 Online only Updated for Version 1.0.1 (Release 2006a)
May 2006 Online only Updated for Version 2.0 (Release 2006a+)
September 2006 Online only Updated for Version 2.0.1 (Release 2006b)





Contents

Modeling

1
Mass Action Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Zero-Order Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
First-Order Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
Second-Order Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Reversible Mass Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7

Enzyme Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
Simple Model for Single Substrate Catalyzed Reactions . . 1-8
Enzyme Reactions with Differential Rate Equations . . . . . 1-9
Enzyme Reactions with Mass Action Kinetics . . . . . . . . . . 1-11
Enzyme Reactions with Irreversible

Henri-Michaelis-Menten Kinetics . . . . . . . . . . . . . . . . . . 1-12

Constant Amount and Boundary Condition . . . . . . . . . . 1-14
Definition of Constant and Boundary Properties . . . . . . . . 1-14
Constant = NO, Boundary = NO . . . . . . . . . . . . . . . . . . . . . 1-15
Constant = YES, Boundary = NO . . . . . . . . . . . . . . . . . . . . . 1-15
Constant = NO, Boundary = YES . . . . . . . . . . . . . . . . . . . . . 1-16
Constant = YES, Boundary = YES . . . . . . . . . . . . . . . . . . . . 1-17
Model Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-18

Parameter and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-19
Definition of Parameter Scope . . . . . . . . . . . . . . . . . . . . . . . 1-19
Using a Parameter in Rules . . . . . . . . . . . . . . . . . . . . . . . . . 1-20
Changing the Scope of a Parameter . . . . . . . . . . . . . . . . . . . 1-20

Algebraic Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-24
What Is an Algebraic Rule? . . . . . . . . . . . . . . . . . . . . . . . . . 1-24
Mass Balance Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-24

Rate Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-26
What Is a Rate Rule? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-26
Rate of Change Is Constant . . . . . . . . . . . . . . . . . . . . . . . . . 1-27

v



Rate of Change Is Exponential . . . . . . . . . . . . . . . . . . . . . . . 1-28
Rate of Change Is Determined by Another Species . . . . . . 1-29
Differential Rate Equations as Rules . . . . . . . . . . . . . . . . . 1-30

Simulation

2
Simulation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

Simulation Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
How Solvers Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Stiff Versus Nonstiff Models . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
Selecting a Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5

Nonstiff Deterministic Solvers . . . . . . . . . . . . . . . . . . . . . . 2-7
ode45 (Dormand-Prince) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
ode23 (Bogacki-Shampine) . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
ode113 (Adams) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7

Stiff Deterministic Solvers . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
ode15s (stiff/NDF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
ode23s (stiff/Mod. Rosenbrock) . . . . . . . . . . . . . . . . . . . . . . . 2-8
ode23t (Mode. stiff/Trapezoidal) . . . . . . . . . . . . . . . . . . . . . . 2-8
ode23tb (stiff/TR-BDF2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9

Stochastic Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
Stochastic Simulation Algorithm (SSA) . . . . . . . . . . . . . . . . 2-10
Explicit Tau-Leaping Algorithm . . . . . . . . . . . . . . . . . . . . . . 2-11
Implicit Tau-Leaping Algorithm . . . . . . . . . . . . . . . . . . . . . 2-12
Ensemble Runs of Stochastic Simulations . . . . . . . . . . . . . . 2-12
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13

Analysis

3
Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

Sensitivity Analysis in SimBiology . . . . . . . . . . . . . . . . . . . 3-2

vi Contents



Sensitivity Analysis Example Using a G Protein Model . . . 3-3
Setting the Configuration Set Object for Sensitivity

Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
Enabling and Setting Sensitivity Analysis Options . . . . . . 3-8
Simulating with Sensitivity Analysis Enabled . . . . . . . . . . 3-9
Extracting and Plotting Sensitivity Data . . . . . . . . . . . . . . 3-9

Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
Parameter Estimation in SimBiology . . . . . . . . . . . . . . . . . 3-12
Parameter Estimation Example Using a G Protein

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13
Importing Target Experimental Data . . . . . . . . . . . . . . . . . 3-15
Simulating the G Protein Model . . . . . . . . . . . . . . . . . . . . . 3-15
Estimating a Parameter (kGd) in the G Protein Model . . . 3-18
Simulating and Plotting Results Using the Estimated

Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20
Estimating Other Parameters in the G Protein Model . . . . 3-22
Simulating and Plotting Results Using Estimated

Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-24

Moiety Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-28
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-28
Finding Conserved Moieties with SimBiology . . . . . . . . . . . 3-28
Examples of Determining Conserved Moieties . . . . . . . . . . 3-30

Importing and Exporting Model Component Data . . . . 3-38
Importing Model Component Data . . . . . . . . . . . . . . . . . . . . 3-38
Exporting Model Component Data . . . . . . . . . . . . . . . . . . . . 3-39

Index

vii



viii Contents



1

Modeling

This chapter describes how you can
use SimBiology to model biological
processes. It begins with the familiar
concepts of mass action and enzyme
kinetics.

Mass Action Kinetics (p. 1-2) Elementary reactions explained by
elementary mass action kinetics

Enzyme Kinetics (p. 1-8) Enzyme-catalyzed reactions
explained by mass action and
Henri-Michaelis-Menten kinetics

Constant Amount and Boundary
Condition (p. 1-14)

Species properties that determine
how species amounts are handled
during a simulation

Parameter and Scope (p. 1-19) Model components that change a
parameter value or a species amount

Algebraic Rules (p. 1-24) Model components that change a
parameter value or a species amount

Rate Rules (p. 1-26) Model components that define the
rate of change for a parameter value
or species amount without using a
reaction



1 Modeling

Mass Action Kinetics
Mass action describes the behavior of reactants and products in an elementary
chemical reaction. Mass action kinetics describes this behavior as an equation
where the velocity or rate of a chemical reaction is directly proportional to
the concentration of the reactants.

Zero-Order Reactions (p. 1-3) Reaction rate does not depend on the
concentration of the reactants.

First-Order Reactions (p. 1-4) Reaction rate is proportional to the
concentration of a single reactant.

Second-Order Reactions (p. 1-5) Reaction rate is proportional to the
concentration of two reactants or the
square of a single reactant.

Reversible Mass Action (p. 1-7) Total reaction rate is the difference
between the forward and reverse
reaction rates.
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Mass Action Kinetics

Zero-Order Reactions
With a zero-order reaction, the reaction rate does not depend on the
concentration of reactants. Examples of zero-order reactions are synthesis
from a null species, and modeling a source species that is added to the system
at a specified rate.

reaction: null -> P
reaction rate: k mole/(liter*second)

species: R = 10 mole
P = 0 mole

parameters: k = 1 mole/(liter*second)

Entering the reaction above into SimBiology and simulating produces the
following result:

Zero-Order Mass Action Kinetics

Note If the amount of a reactant with zero-order kinetics reaches zero before
the end of a simulation, then the amount of reactant can go below zero
regardless of the solver or tolerances you set.
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1 Modeling

First-Order Reactions
With a first-order reaction, the reaction rate is proportional to the
concentration of a single reactant. An example of a first-order reaction is
radioactive decay.

reaction: R -> P
reaction rate: k*R mole/(liter*second)

species: R = 10 mole/liter
P = 0 mole/liter

parameters: k = 1 1/second

Entering the reaction above into SimBiology and simulating produces the
following results:

First-Order Mass Action Kinetics
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Mass Action Kinetics

Second-Order Reactions
A second-order reaction has a reaction rate that is proportional to the square
or the concentration of a single reactant or proportional to two reactants.
Notice the space between the reactant coefficient and the name of the
reactant. Without the space, 2R would be considered the name of a species.

reaction: 2 R -> P
reaction rate: k*R^2 mole/(liter*second)

species: R = 10 mole/liter
P = 0 mole/liter

parameters: k = 1 liter/(mole*second)

Entering the reaction above into SimBiology and simulating produces the
following results:

Second-Order Kinetics with Single Reactant

With two reactants, the reaction rate depends on the concentration of two
of the reactants.

reaction: R1 + R2 -> P
reaction rate: k*R1*R2 mole/(liter*second)
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1 Modeling

species: R1 = 10 mole/liter
R2 = 8 mole/liter
P = 0 mole/liter

parameters: k = 1 liter/(mole*second)

Enter the reaction above into SimBiology and simulating produces the
following results. There is a difference in the final values because the initial
amount of one of the reactants is lower than the other. After the first reactant
is used up, the reaction stops.

Second-Order Kinetics with Two Reactants
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Mass Action Kinetics

Reversible Mass Action
You can model reversible reactions with two separate reactions or with one
reaction. With a single reversible reaction, the reaction rates for the forward
and reverse reactions are combined into one expression. Notice the angle
brackets before and after the hyphen to represent a reversible reaction.

reaction: R <-> P
reaction rate: kf*R - kr*P mole/(liter*second)

species: R = 10 mole/liter
P = 0 mole/liter

parameters: kf = 1 1/second
kr = 0.2 1/second

Entering the reaction above into SimBiology and simulating produces the
following results. At equilibrium when the rate of the forward reaction equals
the reverse reaction, v = kf*R - kr*P = 0 and P/R = kf/kr.
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1 Modeling

Enzyme Kinetics
Enzymes can increase the rate of a reaction by using a reaction mechanism
or pathway with a lower activation energy. This section describes a common
single substrate enzyme model using a mass action mechanism or rate
equations derived from mass action mechanisms.

Simple Model for Single Substrate
Catalyzed Reactions (p. 1-8)

Model for a single substrate reaction
catalyzed irreversibly by an enzyme

Enzyme Reactions with Differential
Rate Equations (p. 1-9)

Model reactions with differential
rate equations derived from the
reactions and reaction rates

Enzyme Reactions with Mass Action
Kinetics (p. 1-11)

Model reactions directly with their
reaction rate equations

Enzyme Reactions with Irreversible
Henri-Michaelis-Menten Kinetics
(p. 1-12)

Model a mass action mechanism
with a derived kinetic equation

Simple Model for Single Substrate Catalyzed
Reactions
A simple model for enzyme-catalyzed reactions starts a substrate S reversibly
binding with an enzyme E. Some of the substrate in the substrate/enzyme
complex is converted to product P with the release of the enzyme.

S + E  ES  E + P
k1

k1r

k2⎯ →⎯⎯← ⎯⎯⎯ ⎯ →⎯⎯

v  = k [S][E],   v  = k [ES],   v  = k [ES]1 1 1r 1r 2 2

This simple model can be defined with

• Differential rate equations. See “Enzyme Reactions with Differential Rate
Equations” on page 1-9.

• Reactions with mass action kinetics. See “Enzyme Reactions with Mass
Action Kinetics” on page 1-11.
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Enzyme Kinetics

• Reactions with Henri-Michaelis-Menten kinetics. See “Enzyme Reactions
with Irreversible Henri-Michaelis-Menten Kinetics” on page 1-12.

Enzyme Reactions with Differential Rate Equations
The reactions for a single-substrate enzyme reaction mechanism (see “Simple
Model for Single Substrate Catalyzed Reactions” on page 1-8) can be described
with differential rate equations. You can enter the differential rate equations
into SimBiology as rate rules.

reactions: none
reaction rate: none

rate rules: dS/dt = k1r*ES - k1*S*E
dE/dt = k1r*ES + k2*ES - k1*S*E
dES/dt = k1*S*E - k1r*ES - k2*ES
dP/dt = k2*ES

species: S = 8 mole
E = 4 mole

ES = 0 mole
P = 0 mole

parameters: k1 = 2 1/(mole*second)
k1r = 1 1/second
k2 = 1.5 1/second

Remember to enter rate rules using the form dS/dt = f(x) as S = f(x).

1-9



1 Modeling

Alternatively, you could remove the rate rule for ES, add a new species Etotal
for the total amount of enzyme, and add an algebraic rule 0 = Etotal - E -
ES, where the initial amounts for Etotal and E are equal.

reactions: none
reaction rate: none

rate rules: dS/dt = k1r*ES - k1*S*E
dE/dt = k1r*ES + k2*ES - k1*S*E
dP/dt = k2*ES

algebraic rule: 0 = Etotal - E - ES
species: S = 8 mole

E = 4 mole
ES = 0 mole
P = 0 mole

Etotal = 4 mole
parameters: k1 = 2 1/(mole*second)

k1r = 1 1/second
k2 = 1.5 1/second
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Enzyme Kinetics

Enzyme Reactions with Mass Action Kinetics
Determining the differential rate equations for the reactions in a model
is a time-consuming process. A better way is to enter the reactions for a
single substrate enzyme reaction mechanism directly into SimBiology. The
following example using models an enzyme catalyzed reaction with mass
action kinetics. For a description of the reaction model, see “Simple Model for
Single Substrate Catalyzed Reactions” on page 1-8.

reaction: S + E -> ES
reaction rate: k1*S*E (binding)

reaction: ES -> S + E
reaction rate: k1r*ES (unbinding)

reaction: ES -> E + P
reaction rate: k2*ES (transformation)

species: S = 8 mole
E = 4 mole

ES = 0 mole
P = 0 mole

parameters: k1 = 2 1/(mole*second)
k1r = 1 1/second
k2 = 1.5 1/second

The results for a simulation using reactions are identical to the results from
using differential rate equations.
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1 Modeling

Enzyme Reactions with Irreversible
Henri-Michaelis-Menten Kinetics
Representing an enzyme-catalyzed reaction with mass action kinetics
requires you to know the rate constants k1, k1r, and k2. However, these rate
constants are rarely reported in the literature. It is more common to give
the rate constants for Henri-Michaelis-Menten kinetics with the maximum
velocity Vm=k2*E and the constant Km = (k1r + k2)/k1. The reaction rate for
a single substrate enzyme reaction using Henri-Michaelis-Menten kinetics is
given below. For information about the model, see “Simple Model for Single
Substrate Catalyzed Reactions” on page 1-8.

v = 
Vmax[S]
Km + [S]

The following example models an enzyme catalyzed reaction using
Henri-Michaelis-Menten kinetics with a single reaction and reaction rate
equation. Enter the reaction defined below into SimBiology and simulate.

reaction: S -> P
reaction rate: Vmax*S/(Km + S)
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Enzyme Kinetics

species: S = 8 mole
P = 0 mole

parameters: Vmax = 6 mole/second
Km = 1.25 mole

The results show a plot slightly different from the plot using mass action
kinetics. The differences are due to assumptions made when deriving the
Henri-Michaelis-Menten rate equation.
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1 Modeling

Constant Amount and Boundary Condition
SimBiology has two properties (constant amount, boundary condition) to
specify how the amount of a species changes or does not change during a
simulation.

Definition of Constant and Boundary
Properties (p. 1-14)

Definitions of constant amount and
boundary condition

Constant = NO, Boundary = NO
(p. 1-15)

Species modeled in a reaction or a
rule, but not both

Constant = YES, Boundary = NO
(p. 1-15)

Constant species that are neither
modeled in a reaction nor varied by
a rule

Constant = NO, Boundary = YES
(p. 1-16)

Species in a reaction, but changed
only by a rule

Constant = YES, Boundary = YES
(p. 1-17)

Constant species in reactions that
adds mass (sources) or removes mass
(sinks)

Model Edges (p. 1-18) Interface between biological system
(model) and the environment

Definition of Constant and Boundary Properties
The SBML specification (Level 2, Version 1) added the property
BoundaryCondition to the model definition.

Species with BoundaryCondition = Yes — The species amount is either
constant or determined by a rule, but in either case the amount is not
determined by a chemical reaction. In other words, the simulation does not
create a differential rate term from the reactions for this species even if it is
in a reaction, but it can have a differential rate term created from a rule.

Species with ConstantAmount = No — The species amount is determined
by a reaction or a rule, but not both.
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Constant Amount and Boundary Condition

Species with ConstantAmount = Yes — The species amount does not
change during a simulation. The species can be in a reaction or rule, but it
cannot have a rule that changes its amount.

Constant = NO, Boundary = NO
The value of a species can change, and it can change with either a reaction
or rule, but not both

Constant Boundary Reaction Rule Changed By

NO NO YES NO Reaction

NO NO NO YES Rule

Example 1 — Species A is in a reaction, and it is in the reaction rate
equation. The species amount or concentration is determined by the reaction.
This is the most common category of a species. A differential rate equation for
the species is created from the reactions.

reaction: A -> B
reaction rate: k*A

Example 2 — Species E is not in the reaction, but it is in the reaction rate
equation. E varies with another reaction or rule.

reaction: S -> P
reaction rate: kcat*E*S/(Km + S)

Example 3 — Species G is not in a reaction, and it is not in a rate equation.
G varies with an algebraic rule or rate rule.

rate rule: dG/dt = k

Constant = YES, Boundary = NO
The value of a species cannot change. When a species has its ConstantValue
selected and BoundaryCondition not selected, it acts like a parameter. It
cannot be in a reaction and it cannot be varied by a rule.
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1 Modeling

Constant Boundary Reaction Rule Changed By

YES NO NO NO Never

Example — Species E is not in the reaction, but it is in the reaction rate
equation. E is constant and could be replaced with the constant Vm = k2*E.

reaction: S -> P
reaction rate: kcat*E*S/(Km + S)

Constant = NO, Boundary = YES
The value of a species can change, and it is in a reaction, but a differential
rate term from the reaction is not created. The value of the species change
with a rule and a differential rate term is created from the rule.

Constant Boundary Reaction Rule Changed By

NO YES YES YES Rule

From the SBML specification (Level 2, Version 1), “By default, when a
species is a product or reactant of one or more reactions, its concentration is
determined by those reactions. In SBML, it is possible to indicate that a
given species’ concentration is not determined by the set of reactions even
when that species occurs as a product or reactant; i.e., the species is on the
boundary of the reaction system but is a component of the rest of the model.”

Example 1 — Species A is not changed by the rate equation, but changes
according to a rate rule. However, A could be in the rate equation that
changes other species in the reaction.

reaction: A -> B
reaction rate: k1 or k1*A

rate rule: dA/dt = k2*A (solution is A = k2*t)
(enter in SimBiology as A = k2*A)

Example 2 — Species A is not in the rate equation, but changes according
to an algebraic rule.

reaction: A -> B + C
reaction rate: k or k*A
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Constant Amount and Boundary Condition

algebraic rule: A = 2*C
(enter in SimBiology as 2*C - A)

Constant = YES, Boundary = YES
The value of the species can change. It is in a reaction, but a differential rate
term is not created from the reaction. The differential rate term is created
from a rule.

Constant Boundary Reaction Rule Changed By

YES YES YES NO Never

During simulation, a differential rate equation is not created for the species.
dSpecies/dt does not exist.

Example 1 — A is a infinite source and its amount does not change. B
increases with a zero order rate (k and k*A are both constants). A source
refers to a species where mass is added to the system.

reaction: A -> B
reaction rate: k or k*A

Example 2 — B decreases with a first-order rate, but A is an infinite sink
and its amount does not change. A sink refers to a species where mass is
subtracted from the system.

reaction: B -> A
reaction rate: k*B

Example 3 — The null species in SimBiology is a reserved species name that
can act as a source or a sink.

reaction: null -> B
reaction rate: k

reaction: B -> null
reaction rate: k*B

Example 4 — ATP and ADP are in the reaction and have constant values,
but they are not in the reaction rate equation.
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1 Modeling

reaction: S + ATP -> P + ADP
reaction rate: Vm*S/(Km + S)

Model Edges
As you build complex models from simpler pathways, there are edges in the
model that you need to define before simulating the model. Knowing where
the model edges are located is important because a species that is initially
constant or unregulated can later vary as you add details to your model. The
concept of a model edge overlaps with SBML boundaries, but not always.

Model edge — Species with constant amounts that might or might not be
modeled in the reaction and reaction rate equations. Examples are cofactors,
NAD+, ATP, and DNA.

Model edge — Enzymes with constant amounts that are not regulated. For
example, a Henri-Michaelis-Menten rate equation with Vmax specified as
a parameter assumes that the amount of enzyme catalyzing the reaction
remains constant.

v
V [Substrate]
K + [Substrate]

max*

m 
=

You may want to temporarily model a regulated enzyme in a rate equation. If
the amount of enzyme is constant, then this species is a model edge. After
adding the reaction(s) that change the amount of the enzyme,

v
k*[ ]*[Substrate]

K + [Substrate]m 
= Enzyme

Model edge — Null or source species that synthesizes another species at a
constant rate (zero order reaction). Mass is added to the system.

Model edge — Degradation of a species to a null or sink species (first-order
reaction). Mass is taken away from the system.
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Parameter and Scope

Parameter and Scope
A parameter is a quantity that can change or can be constant. In SimBiology,
parameters are generally used to define rate constants.

Definition of Parameter Scope
(p. 1-19)

Define a parameter at the model
level or the kinetic law level

Using a Parameter in Rules (p. 1-20) Defining the scope for parameters
that are used in rules

Changing the Scope of a Parameter
(p. 1-20)

Change the scope from kinetic law
level to model level if you want the
parameter to be used in SimBiology
Rules

Definition of Parameter Scope
A parameter is defined either globally at the model level or locally at the
kinetic law level. Scope refers to this definition of the parameter at the model
or kinetic law level.

If the scope of the parameter is global in the model, it can be used by any rule,
any submodel, or by any reaction rate expression in the model. If the scope of
the parameter is at the kinetic law level, it can be used only by the reaction
rate expression for which it was defined.

If you create a new parameter in the Project Settings-Parameters pane,
the scope is set by default to the model. When you create a new parameter to
define a reaction rate equation in the Project Settings-Reactions pane’s
Kinetic Law tab, you can choose whether to assign the parameter locally to
the kinetic law or globally to the model.

For reaction rate, SimBiology hierarchically uses the value of the parameter
at the kinetic law level first. If no such parameter is at the kinetic law level,
SimBiology looks for the parameter at the model level.

If two parameters have the same name, one at the model level and the other at
the kinetic law level, SimBiology uses the value of the parameter at the kinetic
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law level for the reaction rate. SimBiology uses the value of the parameter at
the model level for any rules or submodels that reference the parameter.

Therefore, if you want to vary a parameter that is being referenced in a
reaction rate equation, that parameter must have a unique name, and have
scope at the model level.

Using a Parameter in Rules
When you want to refer to a parameter in a rule expression, in submodels,
or in more than one reaction rate equation, the parameter scope must be at
the model level.

If you want to vary a parameter that is being referenced in a reaction rate
equation, that parameter must have a unique name, and have scope at the
model level. See “Definition of Parameter Scope” on page 1-19 for more
information.

To change the scope from kinetic law level to model level, add the new
parameter, and then configure the reaction to use this new parameter. For
help with this procedure, see “Changing the Scope of a Parameter” on page
1-20.

Note To vary a parameter with a Rule, clear the ConstantValue check box
in the Project Settings-Parameters pane, Settings tab.

Changing the Scope of a Parameter
When you want to refer to a parameter in an expression for a rule, or in more
than one reaction rate equation, the parameter scope must be at the model
level. SimBiology hierarchically uses the value of the parameter at the kinetic
law level first. If no such parameter is at the kinetic law level, SimBiology
searches for the parameter at the model level.

If you have already configured a reaction to use a parameter that is at the
kinetic law level, you can create a new parameter with scope at the model
level and simultaneously configure the reaction to use the new parameter.

1-20



Parameter and Scope

Changing the Scope of a Parameter Without Changing the Name

The following procedure assumes that you want to replace the parameter
at the kinetic law level with another parameter with the identical name.
Because SimBiology references a parameter by its name, this procedure
enables you to make a direct replacement.

1 In the Project Explorer, click Parameters.

2 In the Project Settings-Parameters pane, click the Enter name box
and enter the name of the parameter exactly as previously specified, and
then click the Add button.

K_LactoseBinding

SimBiology adds the parameter to the model level by default.

3 Double-click the Value cell and enter a value for the parameter.

1.0

4 Type a valid unit in the ValueUnits box.

1/mole*second
1/molecule*second

Valid Unit and Units with Prefix Examples

second
mole
molecule
1/(mole*second)
1/(molecule*second)

microsecond
millimole
molecule
1/(micromole*second)
1/(molecule*second)

5 Select the parameter previously specified at the kinetic law level (denoted
by the reaction in the Scope column), and click Delete.
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Changing the Scope and Name of a Parameter

1 In the Project Explorer, click Reactions.

2 In the Project Settings-Reactions pane, select the reaction that uses
the parameter you want to change.

3 Click the Kinetic Law tab.

4 In the Specify Corresponding Parameter Names box, locate the
parameter you want to replace and click New. The New Parameter dialog
box opens.

a In the Name box, specify the name of the new parameter. You can use
the same name; however, you must then follow step 7 and delete the
parameter that is at the kinetic law level.

b From the Scope list, select

Model

c Click Create.

5 Click the Rate Parameters tab, then double-click the Value cell and enter
a value for the parameter.

1.0

6 Type a valid unit in the ValueUnits box.

1/moles*second

1/molecule*second

Valid Unit and Units with Prefix Examples

second
mole
molecule
1/(mole*second)
1/(molecule*second)

microsecond
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millimole
molecule
1/(micromole*second)
1/(molecule*second)

7 (Optional) Select the parameter previously specified at the kinetic law level
(denoted by the reaction in the Scope column), and click Delete.

Note To vary a parameter with a Rule, clear the ConstantValue check box
in the Project Settings-Parameters pane, Settings tab.
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Algebraic Rules
An algebraic rule is a model component that defines the value for a
nonconstant parameter or the amount of a species that is determined through
a algebraic equation instead of a differential relationship.

What Is an Algebraic Rule? (p. 1-24) Define changes in species amounts
and parameters values without
using a reaction.

Mass Balance Equations (p. 1-24) Use mass balance equations with
reactions to define species amounts.

What Is an Algebraic Rule?
An algebraic rule is an equation that defines the value of a variable that you
may not be able to define with a reaction. Use algebraic rules for defining
equity constraints that are not rates of change.

There are two types of rules that are evaluated at each time step during a
simulation. The first is a rate rule (see “Rate Rules” on page 1-26) while the
second is an algebraic rule. An algebraic rule is defined by the equation

0 = f(W) - x

The variable x can be a species amount or parameter value. The function
f(W) is an expression that can include other species and parameters. In
SimBiology, you enter an algebraic rule using the form

f(W) - x

Mass Balance Equations
There are some models in the literature that are defined with differential rate
equations and algebraic mass balance equations.

A mass balance equation can define the amount of a species and reduce the
number of differential rate equations that need to be solved. For example, a
common signal transduction pathway can include a reaction Ei -> Ea where
an enzyme transforms from an active form to an inactive form and back. The
amount of inactive enzyme Ei is defined by the differential rate equation
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dEi/dt = Vm*Ei/Km + Ei. If the total amount of the enzyme is known or
remains constant, the total amount of enzyme Ea can be defined with the
algebraic equation Ea = Et - Ei instead of a differential equation.

With SimBiology, models are defined by reactions, and the corresponding
differential rate equations are calculated for all species. Adding a mass
balance equation as an algebraic rule, and setting Et to be constant, would
overdefine the model and cause a simulation error (the number of equations
cannot be greater then the number of independent variables). If want to use
a mass balance equation, you have to let Et vary, then Et is an independent
variable that is not defined by a reaction and the simulation works.
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Rate Rules
A rule is an model component that defines the value for a parameter or the
amount of a species. Use algebraic rules for equations that are not rates of
change. Use rate rules for equations that determine the rate of change for a
parameter value or species amount.

What Is a Rate Rule? (p. 1-26) Define the rate of change for a
species amount or parameter value.

Rate of Change Is Constant (p. 1-27) Rate of change does not depend on
the changing amount of a species.

Rate of Change Is Exponential
(p. 1-28)

Rate of change depends on the
changing amount of the species.

Rate of Change Is Determined by
Another Species (p. 1-29)

Rate of changed depends on the
changing amount of another species.

Differential Rate Equations as Rules
(p. 1-30)

Rate of change is defined with a
differential rate equation derived
from the reactions.

What Is a Rate Rule?
A rule is an equation that defines the value for a variable. For species, use
rate rules as an alternative to the differential rate expression generated from
reactions.

There are two types of rules that are evaluated at each time step during a
simulation. The first is an algebraic rule (see “Algebraic Rules” on page 1-24)
while the second is a rate rule. A rate rule is defined by the equation

dx/dt = f(W)

The variable x can be a species amount, parameter value, or compartment
dimension (volume or area). The function f(W) is an expression that can
include other species and parameters. In SimBiology, you enter a rate rule
using the form

x = f(W)
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Rate of Change Is Constant
You can increase or decrease the amount or concentration of a species by a
constant value using a zero order rule. For example, the species c increases by
a constant rate k. You could also include species and parameters that have
their ConstantAmount or ConstantValue properties selected.

reaction: none
rate equation: none

rate rule: dc/dt = k
species: c = 0 mole

parameters: k = 1 mole/second

The solution is c = kt + co , where co is the initial amount or concentration
of the species c.

Enter the rule described above as c = k. From the RuleType list, select
rate, enter the values for c and k, and then simulate.

Alternatively, you could model a constant increase in a species with the
reaction null -> C.
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Rate of Change Is Exponential
You can change the amount of a species similar to a first-order reaction using
a first-order rate rule. For example, the species c decays exponentially. You
could also include a parameter with its ConstantValue property cleared or
set to false.

reaction: none
rate equation: none

rate rule: dc/dt = -k*c
species: c = 10 mole

parameters: k = 1 1/second

The solution for the rate rule dc/dt = -k*c is c = c eo
-kt .

Enter the rate rule described above and simulate with an ODE solver.

Notice that if the amount of a species c is determined by a rate rule and c is
also in a reaction, c must have its property for BoundaryCondition selected.
For example, with a reaction a -> c and a rate rule dc/dt = k*c, select the
BoundaryCondtion for c so that a differential rate term is not created from
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the reaction. The amount of c is determined solely by a differential rate term
from the rate rule.

If the boundary condition is not selected, you will get the following error
message:

Invalid rule variable 'in a reaction or another rule'.

Rate of Change Is Determined by Another Species
A species from one reaction can determine the rate of another reaction if it
is in the second reaction rate equation. In a similar way, a species from a
reaction can determine the rate of another species if it is in the rate rule
that defines that other species.

reaction: a -> b
rate equation: v = -k1*a

rate rule: dc/dt = k2*a
species: a = 10 mole

b = 0 mole
c = 5 mole

parameters: k1 = 1 1/second
k2 = 1 1/second

The solution for the species in the reaction are

a=a eo
-k1t and b=a (1-e )o

-k1t

With the rate rule dc/dt = k2*a dependent on the reaction, dc/dt =
k2(aoe

-k1t), and the solution is

c = co + k2ao/k1(1 - e-k
1

t)

Enter the reaction and rule described above and simulate.
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Differential Rate Equations as Rules
Many mathematical models in the literature are described with differential
rate equations for the species. You could manually convert the equations to
reactions, or you could enter the equations as rate rules. For example, you
could enter the following differential rate equation for a species C,

dC
dt

 = v  - v X
C

K  + C
 - k Ci d

c
d

as a rate rule in SimBiology:

C = vi - (vd*X*C)/(Kc + C) - kd*C
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Simulation

Simulation Overview (p. 2-2) Description of stiff and nonstiff
models; procedure for selecting a
solver for your simulation

Nonstiff Deterministic Solvers
(p. 2-7)

Models with either all fast or all slow
changing variables

Stiff Deterministic Solvers (p. 2-8) Models with fast and slow changing
variables

Stochastic Solvers (p. 2-10) Models with a small number of
molecules



2 Simulation

Simulation Overview

Simulation Settings (p. 2-2) Overview of the SimBiology desktop’s
Simulation Settings

How Solvers Work (p. 2-3) How the solver functions compute
model outputs

Stiff Versus Nonstiff Models (p. 2-4) Many biological models include
species amounts that are changing
quickly and others that change
slowly–they are numerically stiff.
This is important for selecting a
solver.

Selecting a Solver (p. 2-5) A guide to solver choice depending
on the problem type and trade-offs
between speed and accuracy

Simulation Settings
The SimBiology integrated desktop environment provides convenient access
to the configuration sets for simulations. In the Project Explorer select the
Simulation Settings node where you can set, change, and save simulation
parameters. You can run simulations, plot simulation results, configure data
logging, and export simulation data.
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When you save simulation settings a new item containing the saved settings
appears in the Project Explorer under Simulation Settings. Double-click
the saved simulation setting to open the pane.

Where to Find Simulation Settings Controls
Use the following controls on the Simulation Settings pane:

• Use the Solver tab to set the simulation solver and timing parameters for
the currently selected model. The common simulation properties are also
accessible in the simulation toolbar.

• Use the Data Logging tab to choose which species to log and how often.

• Use the Export Results tab to export simulation data to the MATLAB®

Workspace and/or to file every time you run a simulation.

• Use the Simulation Plots tab to configure what plots to generate when
you run a simulation.

How Solvers Work
In order to simulate a model, the model is converted to a set of differential
equations. The solver functions are used to compute solutions for those
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equations at different time intervals, giving the model’s states and outputs
over a span of time. You can then plot these outputs from your simulation.

The MATLAB ODE solvers are designed to handle ordinary differential
equations. An ordinary differential equation contains one or more derivatives
of a dependent variable y with respect to a single independent variable t,
usually referred to as time.

The solver functions implement numerical integration methods for solving
initial value problems for ordinary differential equations (ODEs). Beginning
at the initial time with initial conditions, they step through the time interval,
computing a solution at each time step. If the solution for a time step satisfies
the solver’s error tolerance criteria, it is a successful step. Otherwise, it is a
failed attempt; the solver shrinks the step size and tries again.

Stiff Versus Nonstiff Models
An ordinary differential equation problem is stiff if the solution being sought
is varying slowly, but there are nearby solutions that vary rapidly, so the
numerical method must take small steps to obtain satisfactory results. The
ODE solvers in MATLAB whose name ends in "s" are for "stiff" problems.
Many biological models are numerically stiff because they include species
amounts that are changing quickly and others that change slowly.

Stiffness is an efficiency issue. If you don’t care how much time a computation
takes, you need not be concerned about stiffness. Nonstiff methods can solve
stiff problems; they just take a long time to do it.

As an illustration, imagine trying to find the quickest descent through a
canyon. An explicit algorithm, which is normally used for nonstiff models,
would sample the local gradient to find the descent direction. But following
the gradient on either side of the trail will send you bouncing back and forth
from wall to wall — the descent will be found but it will take a long time. An
implicit algorithm used for stiff models can anticipate where each step is
taking you, keep you on the trail with fewer steps, and so save time. Using a
stiff solver for a stiff problem can save thousands of solver steps and function
evaluations compared to a nonstiff solver.

Methods intended to solve stiff problems efficiently do more work per step,
but can take much bigger steps. Stiff methods are implicit. At each step they
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use MATLAB matrix operations to solve a system of simultaneous linear
equations that helps predict the evolution of the solution.

Not all difficult problems are stiff, but all stiff problems are difficult for
solvers not specifically designed for them. Solvers for stiff problems can be
used exactly like the other solvers.

For an illustrative code example you can run to plot the effects of numerical
stiffness on different solvers, see MATLAB News & Notes - May 2003 Cleve’s
Corner: Stiff Differential Equations.

Selecting a Solver
Choice of solver depends on the problem and time available for computation.
There are trade-offs to be made between speed and accuracy. In general,
ode45 is the best function to apply as a "first try" for most problems, or ode15s
if you suspect that a problem is stiff. As you find out more about the problem
you can try other solvers. Experimentation is generally required to determine
the best solver for a particular model. As a general guide:

1 Models with either all fast or all slow changing variables are nonstiff
problems:

Use “Nonstiff Deterministic Solvers” on page 2-7.

• ode45 — Best first guess.

• ode23 — May be more efficient than ode45 with crude tolerances and
mild stiffness.

• ode113 — May be more efficient than ode45 with stringent tolerances.

2 Models with both fast and slow changing variables are stiff problems:

Use “Stiff Deterministic Solvers” on page 2-8.

• ode15s — Try first if you suspect that a problem is stiff, or if ode45 failed
or was very inefficient.

• ode23s — May be more efficient than ode15s at crude tolerances, and
can solve some stiff problems that ode15s cannot.

2-5

http://www.mathworks.com/company/newsletters/news_notes/clevescorner/may03_cleve.html


2 Simulation

• ode23t — Use this solver if the problem is only moderately stiff and you
need a solution without numerical damping.

• ode23tb — Like ode23s, this solver may be more efficient than ode15s
at crude tolerances.

3 Models with a small number of molecules:

Use “Stochastic Solvers” on page 2-10.

• Stochastic — Most accurate, may be too slow if the initial number of
molecules for a reactant species is large.

• Explicit Tau — Speeds up the simulation at the cost of some accuracy;
can be orders of magnitude faster than Stochastic. Can be used for large
problems (provided the problem is not numerically stiff).

• Implicit Tau — May be the fastest, at the cost of some accuracy. Can be
used for large problems and also for numerically stiff problems. For
nonstiff systems may not be a good choice because it adds computational
overhead.

If you use a stochastic solver to simulate a model, SimBiology ignores any
rate, assignment, or algebraic rules if present in the model.
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Nonstiff Deterministic Solvers
Models with either all fast or all slow changing variables may not be
numerically stiff. Nonstiff deterministic solvers are appropriate to try.

ode45 (Dormand-Prince) (p. 2-7) One-step solver based on an explicit
Runge-Kutta (4,5) formula

ode23 (Bogacki-Shampine) (p. 2-7) One-step solver based on an explicit
Runge-Kutta (2,3) formula

ode113 (Adams) (p. 2-7) Variable order
Adams-Bashforth-Moulton
PECE solver

ode45 (Dormand-Prince)
Based on an explicit Runge-Kutta (4,5) formula: the Dormand-Prince pair,

ode45 is a one-step solver in computing y(t )n . It needs only the solution at

the immediately preceding time point y(t )n-1 . In general, ode45 is the best
function to apply as a "first try" for most problems.

ode23 (Bogacki-Shampine)
Based on an explicit Runge-Kutta (2,3) pair of Bogacki and Shampine, ode23
may be more efficient than ode45 at crude tolerances and in the presence of
mild stiffness. Like ode45, ode23 is a one-step solver.

ode113 (Adams)
A variable order Adams-Bashforth-Moulton PECE solver, ode113 may be
more efficient than ode45 at stringent tolerances and when the ODE function
is particularly expensive to evaluate. ode113 is a multistep solver; it normally
needs the solutions at several preceding time points to compute the current
solution.
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Stiff Deterministic Solvers
Models with fast and slow changing variables are numerically stiff. Stiff
deterministic solvers are the best choice.

ode15s (stiff/NDF) (p. 2-8) Variable order solver based on the
numerical differentiation formulas

ode23s (stiff/Mod. Rosenbrock)
(p. 2-8)

One-step solver based on a modified
Rosenbrock formula of order 2

ode23t (Mode. stiff/Trapezoidal)
(p. 2-8)

An implementation of the trapezoidal
rule

ode23tb (stiff/TR-BDF2) (p. 2-9) An implementation of an implicit
Runge-Kutta formula

ode15s (stiff/NDF)
A variable order solver based on the numerical differentiation formulas
(NDFs), ode15s optionally uses the backward differentiation formulas, BDFs
(also known as Gear’s method). Like ode113, ode15s is a multistep solver. If
you suspect that a problem is stiff or if ode45 failed or was very inefficient, try
ode15s.

ode23s (stiff/Mod. Rosenbrock)
The ode23s solver is based on a modified Rosenbrock formula of order 2.
Because it is a one-step solver, it may be more efficient than ode15s at crude
tolerances. It can solve some kinds of stiff problems for which ode15s is not
effective.

ode23t (Mode. stiff/Trapezoidal)
The ode23t solver is an implementation of the trapezoidal rule using a "free"
interpolant. Use this solver if the problem is only moderately stiff and you
need a solution without numerical damping.
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ode23tb (stiff/TR-BDF2)
The ode23tb is an implementation of TR-BDF2, an implicit Runge-Kutta
formula with a first stage that is a trapezoidal rule step and a second stage
that is a backward differentiation formula of order 2. Like ode23s, this solver
may be more efficient than ode15s at crude tolerances.
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Stochastic Solvers
Models with a small number of molecules can realistically be simulated
stochastically that is, allowing the results to contain an element of probability,
unlike a deterministic solution. The stochastic simulation algorithms provide
a practical method for simulating reactions which are stochastic in nature.
Depending on the model, stochastic simulations may take more computation
time than deterministic simulations.

If you use a stochastic solver to simulate a model, SimBiology ignores any
rate, assignment, or algebraic rules if present in the model.

Stochastic Simulation Algorithm
(SSA) (p. 2-10)

Solver uses an exact stochastic
simulation algorithm that simulates
one reaction at a time based on the
propensity function for each reaction

Explicit Tau-Leaping Algorithm
(p. 2-11)

Solver is based on an approximation
algorithm that speeds up simulation
at the cost of accuracy; the degree of
accuracy depends on a user-specified
error tolerance

Implicit Tau-Leaping Algorithm
(p. 2-12)

Similar to Explicit Tau-Leaping
Algorithm with better stability for
numerically stiff problems

Ensemble Runs of Stochastic
Simulations (p. 2-12)

Functions for performing ensemble
runs for stochastic simulations

References (p. 2-13) Stochastic solver references

Stochastic Simulation Algorithm (SSA)
Using the stochastic simulation algorithm for a system is equivalent to solving
the Chemical Master Equation for the system. The Chemical Master Equation
is otherwise impossible to solve for most practical problems. Thus, the
stochastic simulation algorithm provides a practical method for simulating
stochastic systems. The algorithm simulates one reaction at a time based on
the propensity function for each reaction.
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Advantage:

• This algorithm is exact.

Disadvantages:

• Since it evaluates one reaction at a time, it may be too slow for large
problems.

• If the number of molecules of any of the reactants is huge, it may take a
long time to complete the simulation.

Explicit Tau-Leaping Algorithm
Since the stochastic simulation algorithm may be too slow for a lot of practical
problems, this algorithm has been designed to speed up the simulation at
the cost of some accuracy. The algorithm treats each reaction channel as
being independent of the others. It automatically chooses a time interval such
that the relative change in the propensity function for each reaction is less
than the user-specified error tolerance. After selecting the time interval, the
algorithm computes the number of times each reaction channel fires during
the time interval and makes the appropriate changes to the concentration of
various chemical species involved.

Advantages

• This algorithm can be orders of magnitude faster than the SSA.

• This algorithm can be used for large problems (provided the problem is
not numerically stiff).

Disadvantages

• Some accuracy is sacrificed for speed.

• Not good for stiff models.

• The error tolerance needs to be specified in such a manner that the
resulting time steps are of the order of the fastest time scale.
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Implicit Tau-Leaping Algorithm
Like the explicit tau-leaping algorithm, the implicit tau-leaping algorithm
is also an approximate method of simulation designed to speed-up the
simulation at the cost of some accuracy. It can handle numerically stiff
problems better than the explicit tau-leaping algorithm. For deterministic
systems, a problem is said to be numerically stiff if there are “fast” and “slow”
time scales present in the system and the “fast modes” are stable. For such
problems, the explicit tau-leaping method performs well only if it continues
to take small time steps that are of the order of the fastest time scale. The
implicit tau-leaping method can potentially take much larger steps and still
be stable. The algorithm treats each reaction channel as being independent
of others. It automatically chooses a time interval such that the relative
change in the propensity function for each reaction is less than the user
specified error tolerance. After selecting, the algorithm computes the number
of times each reaction channel fires during the time interval and makes the
appropriate changes to the concentration of various chemical species involved.

Advantages

• This algorithm can be much faster than the SSA. It is also usually faster
than the explicit-tau leaping algorithm.

• It can be used for large problems and also for numerically stiff problems.

• The total number of steps taken is usually less than the explicit-tau leaping
algorithm.

Disadvantages

• Some accuracy is sacrificed for speed.

• There is a higher computational burden for each step as compared to the
explicit-tau leaping algorithm. This leads to a larger CPU time per step.

• This method often damps out the perturbations off the slow manifold
leading to a reduced state variance about the mean.

Ensemble Runs of Stochastic Simulations
You can perform ensemble simulations using the stochastic solvers to gather
data from multiple stochastic runs of the model. The following functions let
you perform ensemble runs:
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• sbioensemblerun – Performs a stochastic ensemble run of the SimBiology
model object.

• sbioensembleplot – Shows a 2D distribution plot or a 3D shaded plot of the
time varying distribution of one or more specified species.

• sbioensemblestats – Gets mean and variance as a function of time for
all the species in the model used to generate ensemble data by running
sbioensemblerun.
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Analysis

You can perform sensitivity analysis on your model, look for conserved
moieties, estimate parameters, and gather data with ensemble stochastic
runs in SimBiology.

Sensitivity Analysis (p. 3-2) Calculating the sensitivities of
species with respect to species initial
conditions and parameter values in
the model

Parameter Estimation (p. 3-12) Estimating missing parameters or
optimizing existing parameters

Moiety Conservation (p. 3-28) Analyzing conservation relationships
in a model

Importing and Exporting Model
Component Data (p. 3-38)

Importing and exporting lists of
species, reactions, parameters, and
rules to and from the SimBiology
desktop
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Sensitivity Analysis
Sensitivity analysis lets you calculate the time-dependent sensitivities of all
the species states with respect to species initial conditions and parameter
values in the model. Sensitivity analysis is supported only by the ODE solvers.

Sensitivity Analysis in SimBiology
(p. 3-2)

A brief description of properties for
sensitivity analysis in SimBiology

Sensitivity Analysis Example Using
a G Protein Model (p. 3-3)

An example of sensitivity analysis in
SimBiology using a G Protein Model

Setting the Configuration Set Object
for Sensitivity Analysis (p. 3-5)

How to specify configuration set
object settings for sensitivity
analysis

Enabling and Setting Sensitivity
Analysis Options (p. 3-8)

How to turn on sensitivity analysis
and set sensitivity analysis options

Simulating with Sensitivity Analysis
Enabled (p. 3-9)

How to simulate the model with
sensitivity analysis enabled

Extracting and Plotting Sensitivity
Data (p. 3-9)

How to extract the sensitivity data
from the time series object, and plot
it

Sensitivity Analysis in SimBiology
In SimBiology you can perform sensitivity analysis at the command line by
setting the following properties:

• SensitivityAnalysis – Lets you calculate the time-dependent sensitivities
of all the species states defined by the StatesToLog property with respect
to the initial conditions of the species specified in SpeciesInputFactors
and the values of the parameters specified in ParameterInputFactors
that you specify in the SensitivityAnalysisOptions property of the
configuration set object.

• SensitivityAnalysisOptions – An object that holds the sensitivity
analysis options in the configuration set object. Properties of
SensitivityAnalysisOptions are summarized below:
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- SpeciesInputFactors – Specify the species with respect to which you
want to compute the sensitivities of the species states in your model.
Sensitivities are calculated with respect to the initial conditions of the
specified species.

- ParameterInputFactors – Specify the parameters with respect to which
you want to compute the sensitivities of the species states in your model.
Sensitivities are calculated with respect to the values of the specified
parameters.

- Normalization – Specify the normalization for the calculated
sensitivities.

• 'None' specifies no normalization.

• 'Half' specifies normalization relative to the numerator (species
quantity) only.

• 'Full' specifies full dedimensionalization.

Sensitivity Analysis Example Using a G Protein Model
This example uses a G protein model built shown in the “Model of the Yeast
Heterotrimeric G Protein Cycle ” example to illustrate sensitivity analysis
options in SimBiology.

You can also access two demos that show you sensitivity analysis of this model
by typing the following at the command line:

gprotein_paramestim

(for sensitivity analysis followed by parameter estimation)

gprotein_paramscan

(for sensitivity analysis followed by parameter scanning)

Loading and Exploring the Model

1 Load the G protein model for the wild-type strain.

sbioloadproject gprotein_norules m1
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The project gprotein_norules.sbproj contains two models, one for the
wild-type strain, and one for the mutant strain. If you previously know
that the model you want to load from the project is the first one, you can
specify m1 as shown above. If you do not have any knowledge of the project
contents, you can either load it into the SimBiology desktop and explore the
project on the GUI or, at the command line type,

sbioloadproject ProjectName

MATLAB populates the workspace with the model objects from the project
and lists the objects as m1, m2,...

2 Type the object name.

m1

MATLAB returns model information, for example:

SimBiology Model - Yeast_G_Protein_wt

Model Components:
Models: 0
Parameters: 8
Reactions: 6
Rules: 0
Species: 7

3 Display the species information.

m1.Species

Species Object Array

Index: Name: InitialAmount: InitialAmountUnits:
1 L 6.022e+017
2 R 10000
3 G 7000
4 Gd 3000
5 freeGbg 3000
6 Ga 0
7 RL 0
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4 Display reaction information.

m1.Reactions

Reaction Object Array

Index: Reaction:
1 L + R <-> RL
2 R <-> null
3 RL -> null
4 Gd + freeGbg -> G
5 RL + G -> Ga + freeGbg + RL
6 Ga -> Gd

5 By convention the G protein example uses the object name wtmodelObj to
refer to the model object for the wild-type strain. To use this convention,
type the following:

wtModelObj = m1;

Note m1 and wtModelObj are equivalent; they point to the same object. If
you change one, the other is changed.

You can see that the two objects are equivalent in “Setting the Configuration
Set Object for Sensitivity Analysis” on page 3-5 where you set the states
that SimBiology should return the data for, during simulation.

Setting the Configuration Set Object for Sensitivity
Analysis
The configuration set object holds the options for simulations in SimBiology.
In the configuration set object, you can specify the following:

• The type of solver to use for the simulation

• Stop time of the simulation

• The solver options

• States whose data is logged for you during the simulation
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• Whether SimBiology should perform unit conversion and dimensional
analysis

• The input factors for sensitivity analysis, and the type of normalization for
the sensitivity data

This example shows you how to calculate and visualize the sensitivity data
for one species in the model, active G protein (Ga):

1 Retrieve the configuration set object from the model, and change the
StopTime for the simulation.

csObj = getconfigset(wtModelObj);
set(csObj, 'StopTime', 600);

csObj

Configuration Settings - default (active)
SolverType: ode15s
StopTime: 600.000000

SolverOptions:
AbsoluteTolerance: 1.000000e-006
RelativeTolerance: 1.000000e-003
SensitivityAnalysis: false

RuntimeOptions:
StatesToLog: 6

CompileOptions:
UnitConversion: false
DimensionalAnalysis: false

SensitivityAnalysisOptions:
ParameterInputFactors: 0
SpeciesInputFactors: 0

2 As an exercise to see that m1 and wtmodelObj are equivalent in SimBiology,
retrieve the configuration set object for m1

m1csObj = getconfigset(m1);
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% display the StatesToLog for m1csobj
m1csObj.RunTimeOptions.StatesToLog

Species Object Array

Index: Name: InitialAmount: InitialAmountUnits:
1 R 10000
2 G 7000
3 Gd 3000
4 freeGbg 3000
5 Ga 0
6 RL 0

% Display the StatesToLog for csObj
csObj.RunTimeOptions.StatesToLog

Species Object Array

Index: Name: InitialAmount: InitialAmountUnits:
1 R 10000
2 G 7000
3 Gd 3000
4 freeGbg 3000
5 Ga 0
6 RL 0

3 Change the StatesToLog settings to log only Ga in wtModelObj.

csObj.RunTimeOptions.StatesToLog = sbioselect...
(wtModelObj, 'Type', 'species', 'Where', 'Name', '==', 'Ga');

4 Display the logged states for the configuration set in wtModelObj and in m1.

csObj.RunTimeOptions.StatesToLog

Species Object Array

Index: Name: InitialAmount: InitialAmountUnits:
1 Ga 0

m1csObj.RunTimeOptions.StatesToLog
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Species Object Array

Index: Name: InitialAmount: InitialAmountUnits:
1 Ga 0

As shown above, the objects m1 and wtModelObj are equivalent, and the
objects m1csObj and csObj are equivalent.

Enabling and Setting Sensitivity Analysis Options
To calculate the sensitivity of a species, first enable sensitivity analysis in the
configuration set object (csObj) by setting the SensitivityAnalysis option
to true.

set(csObj.SolverOptions, 'SensitivityAnalysis', true);

In this example, there is only one configuration set object (csObj) . You
can, however, have multiple configuration set objects in a model, but only
one configuration set can be active at a time. You could have more than
one configuration set object, each of which holds a different configuration
for simulation; for example, different solver options, different options for
sensitivity, and so on.

Setting Sensitivity Analysis Options
The SensitivityAnalysisOptions property holds the input factors that
you want to specify, and the type of normalization in use for sensitivity
calculations. This example uses all the parameters in the G protein model as
input factors for sensitivity analysis. Further, the data is fully normalized
and therefore made dimensionless to facilitate the comparison.

1 Retrieve all the parameters in the model and store the vector in a variable.

pif = sbioselect(m1,'Type','parameter');

2 Set the ParameterInputFactors property of the
SensitivityAnalysisOptions object.

set(csObj.SensitivityAnalysisOptions,'ParameterInputFactors', pif);

3 Set the Normalization property of the SensitivityAnalysisOptions
object to perform 'Full' normalization. Often sensitivity numbers are
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so wide ranging that it is hard to compare the data. Full normalization
enables more meaningful comparisons.

set(csObj.SensitivityAnalysisOptions,'Normalization', 'Full');

Simulating with Sensitivity Analysis Enabled

1 Since the initial amount of Ga is set to 0.0 and the data is fully normalized,
there is an expected divide by zero warning. You can turn this off before
simulating, by typing the following command:

warning('off','MATLAB:divideByZero');

2 Simulate the model and return the data to a time series object (tsObj).

tsObj = sbiosimulate(wtModelObj);

Extracting and Plotting Sensitivity Data
You can extract sensitivity results using sbiogetsensmatrix. In this
example, R is the sensitivity of the species Ga with respect to eight parameters.
This example shows you how to compare the variation of sensitivity of Ga with
respect to various parameters, and find the parameters that affect Ga the most.

1 Extract sensitivity data in output variables T (time), R (sensitivity data for
species Ga), snames (names of the states specified for sensitivity analysis),
and ifacs (names of the input factors used for sensitivity analysis).

[T, R, snames, ifacs] = sbiogetsensmatrix(tsObj);

2 Reshape R to facilitate visualization and plotting.

a Note the size of R.

size(R)

342 1 8

MATLAB indicates that R is a 342X1X8 matrix, where the time data
= size(R,1) = 342, the StatesToLog = size (R,2) = 1, and the
number of input factors is size(R,3) = 8.
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b Reshape the matrix such that the data is organized into 8 columns (for
the 8 parameter input factors).

R2 = squeeze(R);

3 After extracting the data and reshaping the matrix, you can now plot the
data.

% Open a new figure

figure;

% Plot time (T) against the

% reshaped data R2

plot(T,R2);

title('Normalized Sensitivity of Ga With Respect To Various Parameters');

xlabel('Time (seconds)');

ylabel('Normalized Sensitivity of Ga');

% Use the ifacs variable containing the

% names of the input factors for the legend

legend(ifacs);
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From the previous plot you can see that Ga is sensitive to parameters kGd,
kRs, kRD1, and kGa. The example for parameter estimation uses this data to
illustrate how you can estimate parameters in your model.
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Parameter Estimation
Parameter estimation lets you estimate the values of unknown parameters in
a model. This is especially useful when some parameters cannot be measured
experimentally .

Parameter Estimation in SimBiology
(p. 3-12)

A brief description of parameter
estimation in SimBiology

Parameter Estimation Example
Using a G Protein Model (p. 3-13)

An example of parameter estimation
in SimBiology using a G protein
model

Importing Target Experimental
Data (p. 3-15)

Import and store the target
experimental data to match for
parameter estimation

Simulating the G Protein Model
(p. 3-15)

Display the configuration set and
simulate the G protein model

Estimating a Parameter (kGd) in the
G Protein Model (p. 3-18)

An example of estimating a single
parameter in SimBiology

Simulating and Plotting Results
Using the Estimated Parameter
(p. 3-20)

Results of using the estimated
parameter value in the G protein
model

Estimating Other Parameters in the
G Protein Model (p. 3-22)

An example of estimating multiple
parameters in SimBiology

Simulating and Plotting Results
Using Estimated Parameter Values
(p. 3-24)

Results of using the estimated
parameter values in the G protein
model

Parameter Estimation in SimBiology
You can estimate a single parameter or all parameters in your model using the
sbioparamestim function in SimBiology. SimBiology uses the optimization
functions in MATLAB, Optimization Toolbox, and Genetic Algorithm and
Direct Search Toolbox to enable parameter estimation.

Optimization Toolbox, and Genetic Algorithm and Direct Search Toolbox are
not required for you to use sbioparamestim. If you have these products
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installed, you can specify optimization methods from these toolboxes as
arguments for the sbioparamestim function. If you do not have these products
installed, sbioparamestim uses the MATLAB function fminsearch by default.
See sbioparamestim in the SimBiology Reference for more information.

Parameter Estimation Example Using a G Protein
Model
This example uses a G protein model built in the “Model of the Yeast
Heterotrimeric G Protein Cycle ” tutorial to illustrate parameter estimation
in SimBiology. The study used to build this model (Yi et al., 2003) reported
the estimated value of parameter kGd as 0.11 for the wild-type strain.

In “Sensitivity Analysis Example Using a G Protein Model” on page 3-3, the
analysis showed that Ga is sensitive to parameters kGd, kRs, kRD1, and kGa.

This example first shows you the estimation of the parameter kGd and how
it affects the model. Next the same example shows how you can estimate
parameters kGd, kRs, kRD1, and kGa to obtain a better fit to the experimental
data.

You can also access a demo that shows you parameter estimation in this
model by typing the following at the command line:

gprotein_paramestim

Loading and Exploring the Model

1 The project gprotein_norules.sbproj contains two models, one for the
wild-type strain (m1), and one for the mutant strain (m2). Load the G
Protein model for the wild-type strain.

sbioloadproject gprotein_norules m1

2 Type the object name that you see in the workspace.

m1
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MATLAB returns model information, for example:

SimBiology Model - Yeast_G_Protein_wt

Model Components:
Models: 0
Parameters: 8
Reactions: 6
Rules: 0
Species: 7

3 Display the species information.

m1.Species

Species Object Array

Index: Name: InitialAmount: InitialAmountUnits:
1 L 6.022e+017
2 R 10000
3 G 7000
4 Gd 3000
5 freeGbg 3000
6 Ga 0
7 RL 0

4 Display reaction information.

m1.Reactions

Reaction Object Array

Index: Reaction:
1 L + R <-> RL
2 R <-> null
3 RL -> null
4 Gd + freeGbg -> G
5 RL + G -> Ga + freeGbg + RL
6 Ga -> Gd
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5 By convention the G protein example uses the object name wtmodelObj to
refer to the model object for the wild-type strain. To use this convention,
type the following:

wtModelObj = m1;

Note m1 and wtModelObj are equivalent; they point to the same object. If
you change one, the other is changed.

Importing Target Experimental Data
For this example, you will store the experimental data in a variable in the
MATLAB workspace. If you need to import data into MATLAB see “Importing
Data to MATLAB”, in the MATLAB documentation for more information.

The study used for this example (Yi et al., 2003) reports the experimental data
in a plot as the fraction of active G (Ga). Calculate and store the amount of
Ga in a variable.

1 The initial amount of total G protein is 1000 molecules. The values for the
fraction of active G are stored in Ga_frac. Ga_target contains the values
of Ga over time.

Gt = 10000;
Ga_frac = [0 0.35 0.4 0.36 0.39 0.33 0.24 0.17 0.2]';
Ga_target = Ga_frac * Gt;

2 The time data for the experimental results is stored in t_span.

t_span = [0 10 30 60 110 210 300 450 600]';

Simulating the G Protein Model
Display the configuration set that is loaded with the G protein cycle model
and simulate the model.

1 Display the configuration set options in the model.

wtModelObj.configset

Configuration Settings - default (active)
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SolverType: ode15s
StopTime: 600.000000

SolverOptions:
AbsoluteTolerance: 1.000000e-006
RelativeTolerance: 1.000000e-003
SensitivityAnalysis: false

RuntimeOptions:
StatesToLog: 6

CompileOptions:
UnitConversion: false
DimensionalAnalysis: false

SensitivityAnalysisOptions:
ParameterInputFactors: 0
SpeciesInputFactors: 0

The model configuration set has StopTime set to 600 seconds.

2 Simulate the model and return the results to a time series object.

ts_orig = sbiosimulate(wtModelObj);

3 Retrieve the time and state data.

[t_orig, Ga_orig] = sbiogetnamedstate(ts_orig,'Ga');

Calculating R-Square for the G Protein Model
R-square measures how successful the fit is in explaining the variation of the
data. In other words, R-square is the square of the correlation between the
response values and the predicted response values.

1 Calculate the sum of squares about the mean (SST).

sst = norm(Ga_target - mean(Ga_target))^2;

2 Interpolate the data to get time points that match the time points in the
experimental data with the cubic interpolation method.
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Ga_resampled = interp1(t_orig, Ga_orig, t_span, 'cubic');

3 Calculate the sum of squares due to error (SSE).

sse = norm(Ga_target - Ga_resampled)^2;

4 Calculate R-square for the simulation data before parameter estimation.

rsquare_orig = 1-sse/sst

rsquare_orig =

0.8967

For more information about R-square, see “Evaluating the Goodness of Fit” in
the Curve Fitting Toolbox documentation. For more information about the
functions used here, see interp1, norm.

Plotting the Experimental Results and Simulation Data

1 Plot the experimental data for Ga.

plot(t_span, Ga_target, 'ro');
title('Variation of Ga');
xlabel('Time (sec)');
ylabel('Amount of Ga');
legend('Target');

2 Plot the simulation data in the same plot.

hold on;
plot(t_orig, Ga_orig);
legend('Target', 'Original');
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Leave this figure window open so that you can use it to plot and compare
results of using the estimated parameters later in this example.

Estimating a Parameter (kGd) in the G Protein Model
The study used to build the G protein model reported an estimated value of
0.11 for the parameter kGd in the wild-type strain (Yi et al., 2003). This
example estimates the value kGd and calculates the R-square value with
the new estimate.

1 Set up the parameter to estimate and the state to match.

param_to_tune = sbioselect(wtModelObj,'Type',...
'parameter','Name','kGd');

Ga = sbioselect(m1,'Type','species','Name','Ga');

2 Switch on information about iterations in the display to see how
optimization is progressing.
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opt1 = optimset('Display','iter');

3 Use the current values of parameters in the model as the starting values
for optimization. Use the default optimization method ('lsqcurvefit' if
you have Optimization Toolbox installed.

[k_new1, result1] = sbioparamestim(wtModelObj, t_span, ...
Ga_target, Ga, param_to_tune, {}, {'lsqcurvefit',opt1});

Iteration Func-count f(x) step optimality CG-iterations

0 2 1.4264e+006 2.84e+007

1 4 1.11306e+006 0.0105776 8.23e+006 1

2 6 1.11306e+006 0.0045504 8.23e+006 1

3 8 1.11306e+006 0.0011376 8.23e+006 0

4 10 1.11183e+006 0.0002844 6.93e+005 0

5 12 1.11183e+006 0.0002844 6.93e+005 1

6 14 1.11183e+006 7.10999e-005 6.93e+005 0

7 16 1.11183e+006 1.7775e-005 6.93e+005 0

8 18 1.11183e+006 4.44375e-006 6.93e+005 0

9 20 1.11183e+006 1.11094e-006 6.93e+005 0

10 22 1.11183e+006 2.77734e-007 6.93e+005 0

Optimization terminated: norm of the current step is less

than OPTIONS.TolX.

Alternatively, if you do not have Optimization Toolbox, the following
command lets you use 'fminsearch' in MATLAB.

[k_new1, result1] = sbioparamestim(wtModelObj, ...
t_span, Ga_target, Ga, param_to_tune, {}, {'fminsearch',opt1});

Iteration Func-count min f(x) Procedure

0 1 1194.32

1 2 1091.86 initial simplex

2 4 1054.2 reflect

3 6 1054.2 contract outside

4 8 1054.2 contract inside

5 11 1054.2 shrink

6 13 1054.2 contract outside

7 15 1053.95 contract outside

8 17 1053.95 contract inside

9 19 1053.86 reflect
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10 21 1053.86 contract inside

11 23 1053.86 contract inside

12 25 1053.84 reflect

13 27 1053.84 contract inside

14 29 1053.82 reflect

15 31 1053.82 contract inside

16 33 1053.34 reflect

17 36 1053.34 shrink

18 38 1053.32 reflect

19 40 1053.32 contract inside

20 42 1053.32 contract inside

21 44 1053.32 contract inside

22 46 1053.32 contract outside

23 48 1053.32 contract inside

24 51 1053.32 shrink

25 53 1053.32 contract outside

Optimization terminated:

the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-004

and F(X) satisfies the convergence criteria using OPTIONS.TolFun of 1.000000e-004

4 Calculate the R-Square value with the new estimate obtained with
'lsqcurvefit'. The fval field in result1 contains the value of SSE.

sse = result1.fval;
rsquare1 = 1-sse/sst

rsquare1 =

0.9195

Simulating and Plotting Results Using the Estimated
Parameter
Use the estimated value of kGd to see how it affects simulation results.

1 Before changing the value, save the old value in case you need it later.

kGd0 = get(param_to_tune, 'Value');
set(param_to_tune, 'Value', k_new1);
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2 Set the parameter to the new value. The param_to_tune variable was
previously defined as the parameter kGd in this exercise.

set(param_to_tune, 'Value', k_new1);

3 Simulate the model and get the results.

ts1 = sbiosimulate(m1);
[t1, Ga1] = sbiogetnamedstate(ts1,'Ga');

4 Plot the data and compare. If you have left the previous figure open, since
hold is on, this plot will appear in that figure to facilitate the comparison.

plot(t1, Ga1, 'm-');
legend('Target', 'Original', 'kGd Changed');

The figure shows the best fit achieved by changing the parameter kGd.
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Leave this figure window open, so that you can use it to plot and compare
results of using the estimated parameters later in this example.

Estimating Other Parameters in the G Protein Model
The example illustrating sensitivity analysis (“Sensitivity Analysis Example
Using a G Protein Model” on page 3-3) showed that Ga is sensitive to
parameters kGd, kRs, kRD1, and kGa. Based on this data, this tutorial shows
you how to estimate these parameters. The sensitivity data is presented in
“Extracting and Plotting Sensitivity Data” on page 3-9.

Although this example estimates four parameters to fit the data, there is no
published experimental data that verifies these values, and this example is
only for illustration.

1 Reset the value of the parameter kGd to the original value.

set(param_to_tune, 'Value', kGd0);

2 Find the indices for each of the parameters to estimate.

params = sbioselect(m1, 'Type', 'parameter')

Parameter Object Array

Index: Name: Value: ValueUnits:
1 kRLm 0.01
2 kRL 3.32e-018
3 kRdo 0.0004
4 kRs 4
5 kRD1 0.004
6 kG1 1
7 kGa 1e-005
8 kGd 0.11

Note that the required parameter indices are 4, 5, 7, and 8.

3 Set the parameter array for estimation.

param_to_tune = params([4 5 7 8]);
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4 Switch on information about iterations in the display to see how
optimization is progressing.

opt2 = optimset('Display','iter');

Note fminsearch performs many more iterations and therefore takes
more time in the next step.

5 Estimate the parameters. Use the current values of parameters in the
model as the starting values for optimization. Use the default optimization
method ('lsqcurvefit') if you have Optimization Toolbox installed. Note
that the param_to_tune argument now contains the array of parameters
to be estimated.

[k_new2, result2] = sbioparamestim(wtModelObj, t_span,...
Ga_target, Ga, param_to_tune, {}, {'lsqcurvefit',opt2});

Norm of First-order

Iteration Func-count f(x) step optimality CG-iterations

0 5 1.4264e+006 2.84e+007

1 10 611055 3.63737 2.58e+006 1

2 15 576458 1.188 6.76e+005 1

3 20 576458 0.0540078 6.76e+005 1

4 25 576458 0.0135019 6.76e+005 0

5 30 576458 0.00337549 6.76e+005 0

6 35 576458 0.000843872 6.76e+005 0

7 40 576458 0.000210968 6.76e+005 0

8 45 576458 5.2742e-005 6.76e+005 0

9 50 576458 1.31855e-005 6.76e+005 0

10 55 576458 3.29637e-006 6.76e+005 0

11 60 576458 8.24093e-007 6.76e+005 0

Optimization terminated: norm of the current step is less

than OPTIONS.TolX.

Alternatively, if you do not have Optimization Toolbox the following
command lets you use 'fminsearch' in MATLAB:

[k_new2, result2] = sbioparamestim(wtModelObj, t_span, ...
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Ga_target, Ga, param_to_tune, {}, {'fminsearch',opt2});

6 Compare original parameter values and the estimated parameter values
obtained with 'lsqcurvefit'.

% Original parameter values.
param_to_tune

Parameter Object Array

Index: Name: Value: ValueUnits:
1 kRs 4
2 kRD1 0.004
3 kGa 1e-005
4 kGd 0.11

% Estimated parameter values.
k_new2 =

8.8253
0.0041
0.0000
0.1229

7 Calculate the R-Square value with the new estimates obtained with
'lsqcurvefit'.

sse = result2.fval;
rsquare2 = 1-sse/sst

rsquare2 =

0.9583

Simulating and Plotting Results Using Estimated
Parameter Values
Now that the estimated parameters values are known, set the parameter
values in the model to the new values, simulate, and compare the results
with the original values.
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1 Display the model’s current parameter values.

params = sbioselect(m1, 'Type', 'parameter')

Parameter Object Array

Index: Name: Value: ValueUnits:
1 kRLm 0.01
2 kRL 3.32e-018
3 kRdo 0.0004
4 kRs 4
5 kRD1 0.004
6 kG1 1
7 kGa 1e-005
8 kGd 0.120862

2 Set the parameters in the model to the estimated values.

for i=1:length(k_new2)
set(param_to_tune(i), 'Value', k_new2(i));

end

3 Verify that the model now has new values for the parameters.

params = sbioselect(m1, 'Type', 'parameter')

Parameter Object Array

Index: Name: Value: ValueUnits:
1 kRLm 0.01
2 kRL 3.32e-018
3 kRdo 0.0004
4 kRs 8.8253
5 kRD1 0.00413679
6 kG1 1
7 kGa 9.14712e-006
8 kGd 0.122862

4 Simulate the model with the new values.

ts3 = sbiosimulate(m1);
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[t3, Ga3] = sbiogetnamedstate(ts3,'Ga');

5 Compare the simulation results with the target experimental data.

plot(t3, Ga3, 'r-');
legend('Target', 'Original', 'kGd Changed', ...

'kRs, kRD1, kGa, kGd Changed');

6 Evaluate the fit. Compare the improvement in R-square values.

disp('Original R-square value:');
fprintf('%g\n', rsquare_orig);
fprintf('\n');
disp('R-square value with one estimated parameter value:');
fprintf('%g\n', rsquare1);
fprintf('\n');
disp('R-square value with four estimated parameter values:');
fprintf('%g\n', rsquare2);
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Original R-square value:
0.896737

R-square value with one estimated parameter value:
0.919485

R-square value with four estimated parameter values:
0.958255

In summary, this example showed you how to estimate parameters in a model,
when given experimental target data, and how to compare the simulation
results after each estimation, and how to evaluate the fit with R-square
values.
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Moiety Conservation
You can analyze conservation relationships in a model using the sbiomoiety
function in SimBiology.

Introduction (p. 3-28) Introduction to moiety conservation

Finding Conserved Moieties with
SimBiology (p. 3-28)

Introduction to the sbioconsmoiety
function

Examples of Determining Conserved
Moieties (p. 3-30)

Shows you how to determine
conserved moieties using SimBiology

Introduction
Consider the network

reaction 1: A -> B
reaction 2: B -> C
reaction 3: C -> A

Regardless of the rates of reactions 1, 2, and 3, the quantity A + B + C is
conserved throughout the dynamic evolution of the system. This conservation
is termed structural because it depends only on the structure of the network,
rather than on details such as the kinetics of the reactions involved. In the
context of systems biology, such a conserved quantity is sometimes referred to
as a conserved moiety. A typical and real-world example of a conserved moiety
is adenine in its various forms ATP, ADP, AMP, etc. Finding and analyzing
conserved moieties may yield insights into the structure and function of
a biological network. In addition, for the quantitative modeler, conserved
moieties represent dependencies which can be removed to reduce a system’s
dimensionality, or number of dynamic variables. In the simple network above,
for example, in principle, it is only necessary to calculate, the time courses for
A and B; once this is done, C is fixed by the conservation relation.

Finding Conserved Moieties with SimBiology
The sbioconsmoiety function lets you calculate a complete set of linear
conservation relations for the species in a SimBiology model object.
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sbioconsmoiety lets you specify one of three algorithms based on the nature
of the model and the required results:

• When you specify 'qr', sbioconsmoiety uses an algorithm based on QR
factorization. From a numerical standpoint, this is the most efficient and
reliable approach.

• When you specify 'rreduce', sbioconsmoiety uses an algorithm based
on row reduction, which yields better numbers for smaller models. This is
the default.

• When you specify 'semipos', sbioconsmoiety returns conservation
relations in which all the coefficients are greater than or equal to zero,
permitting a more transparent interpretation in terms of physical
quantities.

For larger models, the QR-based method is recommended. For smaller models,
row reduction or the semipositive algorithm may be preferable. For row
reduction and QR factorization, the number of conservation relations returned
equals the row rank degeneracy of the model object’s stoichiometry matrix.
The semipositive algorithm may return a different number of relations.
Mathematically speaking, this algorithm returns a generating set of vectors
for the space of semipositive conservation relations.

In some situations, you may be interested in the dimensional reduction of
your model via conservation relations. Recall the simple model presented in
the “Introduction” on page 3-28 that contained the conserved cycle A + B +
C. Given A and B, C is determined by the conservation relation; the system
can be thought of as having only two dynamic variables rather than three.
The 'link' algorithm specification caters to this situation. In this case,
sbioconsmoiety partitions the species in the model into independent and
dependent sets and calculates the dependence of the dependent species on the
independent species.

Consider a general system with an n-by-m stoichiometry matrix N of rank k,
and suppose that the rows of N are permuted (which is equivalent to permuting
the species ordering) so that the first k rows are linearly independent. The
last n−k rows are then necessarily dependent on the first k.

The matrix N can be split up into the following independent and dependent
parts:
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N = 
N
N

R

D

⎛

⎝
⎜

⎞

⎠
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where R in the independent submatrix NR denotes ’reduced’, the (n−k)-by-k
link matrix L0 is defined so that ND = L0*NR. In other words, the link
matrix gives the dependent rows ND of the stoichiometry matrix, in terms
of the independent rows NR. Because each row in the stoichiometry matrix
corresponds to a species in the model, each row of the link matrix encodes how
one dependent species is determined by the k independent species.

Examples of Determining Conserved Moieties

G Protein Example (p. 3-30) Example using the G protein cycle
model

Mitotic Oscillator Example (p. 3-34) Example using the Mitotic Oscillator
model

G Protein Example

1 Load the G protein model for the wild-type strain.

sbioloadproject gprotein_norules

MATLAB populates the workspace with the model objects from the project
and lists the objects as m1 and m2.

2 Type an object name that you see in the workspace.

m1

MATLAB returns model information, for example:

SimBiology Model - Yeast_G_Protein_wt

Model Components:
Models: 0
Parameters: 8
Reactions: 6
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Rules: 0
Species: 7

3 Display the species information.

m1.Species

Species Object Array

Index: Name: InitialAmount: InitialAmountUnits:
1 L 6.022e+017
2 R 10000
3 G 7000
4 Gd 3000
5 freeGbg 3000
6 Ga 0
7 RL 0

4 Display reaction information.

m1.Reactions

Reaction Object Array

Index: Reaction:
1 L + R <-> RL
2 R <-> null
3 RL -> null
4 Gd + freeGbg -> G
5 RL + G -> Ga + freeGbg + RL
6 Ga -> Gd

5 By convention, the G protein example uses the object name wtmodelObj to
refer to the model object for the wild-type strain. To use this convention,
type the following:

wtModelObj = m1;

Note m1 and wtModelObj are equivalent; they point to the same object. If
you change one, the other is changed.
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6 Use the simplest form of the sbioconsmoiety function and display the
results.

[g sp] = sbioconsmoiety(wtModelObj)

g =

0 0 1 0 1 0 0
0 0 1 1 0 1 0

sp =

'L'
'R'
'G'
'Gd'
'freeGbg'
'Ga'
'RL'

7 Use the semipositive algorithm to explore conservation relations in the
model. The 'p' specifies that the output should be in the form of a printed
cell array.

sbioconsmoiety(wtModelObj,'semipos','p')

ans =

'G + freeGbg'
'G + Gd + Ga'

As expected, the function predicts the conservation relationship for the
different forms of the G protein complex.

8 Use the 'link' option to study the dependent and independent species.

[SI,SD,L0,NR,ND] = sbioconsmoiety(wtModelObj, 'link');

9 Show the list of independent species.

SI
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SI =

'R'
'G'
'RL'
'Gd'
'L'

10 Show the list of dependent species.

SD

SD =

'freeGbg'
'Ga'

11 Show the link matrix relating SD and SI.

L0

L0 =
(1,2) -1
(2,2) -1
(2,4) -1

12 Show the independent stoichiometry matrix, NR.

NR

NR =

(1,1) -1
(3,1) 1
(5,1) -1
(1,2) -1
(3,3) -1
(2,4) 1
(4,4) -1
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(2,5) -1
(4,6) 1

13 Show the dependent stoichiometry matrix, ND.

ND

ND =

(1,4) -1
(1,5) 1
(2,5) 1
(2,6) -1

Mitotic Oscillator Example

1 Load the Goldbeter Mitotic Oscillator model.

sbioloadproject Goldbeter_Mitotic_Oscillator_with_reactions

MATLAB populates the workspace with the model object from the project
and lists the object as m1.

2 Explore the model.

m1

MATLAB returns model information, for example:

SimBiology Model - Goldbeter Mitotic Oscillator with reactions

Model Components:
Models: 0
Parameters: 13
Reactions: 7
Rules: 4
Species: 10

3 Display the species information.

m1.Species
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Species Object Array

Index: Name: InitialAmount: InitialAmountUnits:
1 C 0.01
2 M 0.01
3 Mplus 0.99
4 Mt 1
5 X 0.01
6 Xplus 0.99
7 Xt 1
8 V1 0
9 V3 0
10 AA 0

4 Display reaction information.

m1.Reactions

Reaction Object Array

Index: Reaction:
1 AA -> C
2 C -> AA
3 C + X -> AA + X
4 Mplus + C -> M + C
5 M -> Mplus
6 Xplus + M -> X + M
7 X -> Xplus

5 Use the simplest form of the sbioconsmoiety function and display the
results.

[g sp] = sbioconsmoiety(m1)

g =

0 1 1 0 0 0
0 0 0 1 1 0
0 0 0 0 0 1
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sp =

'C'
'M'
'Mplus'
'X'
'Xplus'
'AA'

6 Use the semipositive algorithm to explore conservation relations in the
model.

cons_rel = sbioconsmoiety(m1,'semipos','p')

cons_rel =

'AA'
'X + Xplus'
'M + Mplus'

7 Use the 'link' option to study the dependent and independent species.

[SI,SD,L0,NR,ND] = sbioconsmoiety(m1, 'link');

8 Show the list of independent species.

SI

SI =

'C'
'M'
'X'

9 Show the list of dependent species.

SD

SD =

'Mplus'
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'Xplus'
'AA'

10 Show the link matrix relating SD and SI.

L0

L0 =

(1,2) -1
(2,3) -1

11 Show the independent stoichiometry matrix, NR.

NR

NR =

(1,1) 1
(1,2) -1
(1,3) -1
(2,4) 1
(2,5) -1
(3,6) 1
(3,7) -1

12 Show the dependent stoichiometry matrix, ND.

ND

ND =

(1,4) -1
(1,5) 1
(2,6) -1
(2,7) 1
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Importing and Exporting Model Component Data
You can import and export lists of species, reactions, parameters, and rules
to and from the SimBiology desktop.

Importing Model Component Data
(p. 3-38)

How to import model component
data into the SimBiology desktop

Exporting Model Component Data
(p. 3-39)

How to export model component data
from the SimBiology desktop

Importing Model Component Data
You can import data from an Excel spreadsheet, or from a comma-separated
or tab-separated text file using the Load Data from File menu item. The
Excel option is only supported on the Windows platform.

1 From the File menu, select point to Load Data from File and select the
component type, for example, Species. The Load Species from File dialog
box opens.

2 From the File Type list, select Excel, comma-separated text file, or
tab-separated text file.

3 In the File Name box, enter a file path and name or browse to select
a file name.

4 If the first row in the file contains header information, select the First row
contains header information check box.

5 If your model and the file have some identical names, clear the Overwrite
current property values check box to preserve the values in the model.

6 Select the properties to import. There are required properties based on
the component type. For example, the Name of the species is a required

property. Specify column order using the and arrows. The first
property selected corresponds to the first column in the Excel spreadsheet
or text file.

7 Click OK. The data from your file is entered into the model.
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Note

• If you have preexisting species in the model, SimBiology appends
nonidentical species names.

• If you want a species to remain constant throughout a simulation, you
can specify this using the Boolean operator TRUE in the Excel or text
file. During importation, SimBiology will select the ConstantAmount
check box for that species. The default is unchecked.

Exporting Model Component Data
You can export data to an Excel spreadsheet, or to a comma-separated or
tab-separated text file using the Export Data to File menu item. The Excel
option is only supported on the Windows platform.

1 From the File menu, point to Export Data to File and select the
component type, for example, Species. The Export Species to File dialog
box opens.

2 From the File Type list, select Excel, comma-separated text file, or
tab-separated text file.

3 In the File Name box, enter a file path and name or browse to select
a file name.

4 If the first row in the generated file should contain the property names,
select the Write property names to first row in file check box.

5 Select the properties to export. There are required properties based on
the component type. For example, the Name of the species is a required

property. Specify column order using the and arrows.

The first property selected corresponds to the first column in the Excel
spreadsheet or text file.

6 Click OK. The data from your model is entered into the file.
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